Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Pediatr Emerg Care ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38459619

RESUMO

OBJECTIVES: Early wound management for pediatric patients with partial-thickness burns in the emergency department remains debatable. This study aims to evaluate the value of emergency conservative debridement under topical anesthesia in improving short-term prognosis of pediatric partial-thickness burns. METHODS: This retrospective cohort study enrolled children with partial-thickness thermal burns presenting to the emergency department within 6 hours postburn. All the enrolled patients were divided into 2 groups: the debridement group and the dressing group. The associations between emergency conservative debridement and time to reepithelialization was analyzed by using Kaplan-Meier curves with log rank test and multivariate Cox regression analysis. Moreover, the associations between emergency conservative debridement and in-hospital cost and length of stay were also evaluated. RESULTS: All baseline characteristics between groups were comparable (all P > 0.05). Emergency conservative debridement under topical anesthesia significantly decreased the median value of time to reepithelialization (13 vs 14 days, P = 0.02). Cox regression analysis showed that emergency conservative debridement significantly improved wound reepithelialization after adjusting for burn size (odds ratio, 4.07; 95% confidence interval, 1.64-10.11; P < 0.01). The mean length of stay of patients receiving conservative wound debridement was lower than that of patients in the wound dressing group (14.3 ± 7.3 vs 18.8 ± 10.4 days, P < 0.01), but not in terms of mean in-hospital cost per 1% total body surface area (2.8 ± 1.9 vs 3.0 ± 2.1 × 103 RMB per 1% total body surface area, P = 0.58). CONCLUSIONS: Emergency conservative debridement of pediatric partial-thickness burns under topical anesthesia significantly improves the wound healing outcomes without increasing health care burden.

2.
Photobiomodul Photomed Laser Surg ; 42(2): 148-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301209

RESUMO

Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.


Assuntos
Lesão Pulmonar Aguda , Terapia com Luz de Baixa Intensidade , Sepse , Camundongos , Animais , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/tratamento farmacológico , Macrófagos , Sepse/complicações , Sepse/radioterapia , Sepse/tratamento farmacológico , RNA Mensageiro
3.
Nanoscale ; 16(2): 765-776, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088682

RESUMO

This study examines the effects of hybrid nanoparticles made of NiO@rGO (reduced graphene oxide) and NiO@CNT (carbon nanotubes) on PCDTBT and PCBM active layers in glass/ITO/HTL/active-layer/LiF/Al structured bulk heterojunction (BHJ) polymer solar cells (PSCs) and X-ray photodetectors. These hybrid nanoparticles were used to create BHJ solar cells and photodetectors, and microscopic research was conducted to determine how they affect the structure of the devices. The findings show that compared to conventional matrices, the active layers with NiO@rGO and NiO@CNT incorporation have increased the charge carrier capacities and exciton dissociation properties. In order to assess their impact on the characteristics of charge transport, various weight ratios of these hybrid nanoparticles dispersed in polymer junctions are being investigated. Notably, compared to the pure PCDTBT:PCBM active layer (power conversion efficiency (PCE) = 4.35%), the NiO@CNT device has the highest PCE = 6.42% which, among the tested configurations, demonstrates its superior performance in converting sunlight into electricity. Among the tested X-ray detector materials, "NiO@CNT" achieves the best performance with a sensitivity of 1.92 mA Gy-1 cm-2. Through improved interfacial behaviors and effective charge transport, this work highlights the potential of these cutting-edge hybrid nanoparticles to enhance the performance of organic electronic devices.

4.
J Integr Plant Biol ; 66(1): 17-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38078380

RESUMO

A sample delivery method, modified from cut-dip-budding, uses explants with robust shoot regeneration ability, enabling transformation and gene editing in medicinal plants, bypassing tissue culture and hairy root formation. This method has potential for applications across a wide range of plant species.


Assuntos
Edição de Genes , Plantas Medicinais , Edição de Genes/métodos , Plantas Medicinais/genética , Transformação Genética , Plantas Geneticamente Modificadas/genética
5.
J Photochem Photobiol B ; 250: 112828, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101122

RESUMO

Rheumatoid arthritis (RA) is caused by inflammatory response of joints with cartilage and damage of synovium and bone erosion. In our previous studies, it has showed that irradiation of 630 nm LED reduce inflammation of synovial fibroblasts and cartilage and bone destruction in RA. However, the key genes and mechanism in ameliorating RA by irradiation of 630 nm LED remains unknown. In this study, human fibroblast-like synoviocytes (FLS) cell line MH7A and primary human RA-FLSs were treated with TNF-α and 630 nm LED irradiation with the different energy density. The mRNA sequencing was performed to screen the differentially expressed genes (DEGs). In all datasets, 10 DEGs were identified through screening. The protein interaction network analysis showed that 8 out of the 10 DEGs interacted with each other including IL-6, CXCL2, CXCL3, MAF, PGF, IL-1RL1, RRAD and BMP4. This study focused on BMP4, which is identified as important morphogens in regulating the development and homeostasis. CCK-8 assay results showed that 630 nm LED irradiation did not affect the cell viability. The qPCR and ELISA results showed that TNF-α stimulation inhibited BMP4 mRNA and protein level and irradiation of 630 nm LED increased the BMP4 mRNA and protein level in MH7A cells. In CIA and transgenic hTNF-α mice models, H&E staining showed that irradiation of 630 nm LED decreased the histological scores assessed from inflammation and bone erosion, while BMP4 expression level was up-regulated after 630 nm LED irradiation. Pearson correlation analysis shown that BMP4 protein expression was negatively correlated with the histological score of CIA mice and transgenic hTNF-α mice. These results indicated that BMP4 increased by irradiation of 630 nm LED was associated with the amelioration of RA, which suggested that BMP4 may be a potential targeting gene for photobiomodulation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proteína Morfogenética Óssea 4 , Luz , Animais , Humanos , Camundongos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/fisiologia , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Inflamação/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Gut Microbes ; 15(2): 2281382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38017660

RESUMO

The gut-joint axis, one of the mechanisms that mediates the onset and progression of joint and related diseases through gut microbiota, and shows the potential as therapeutic target. A variety of drugs exert therapeutic effects on rheumatoid arthritis (RA) through the gut-joint axis. However, the anti-inflammatory and immunomodulatory effect of novel photobiomodulatory therapy (PBMT) on RA need further validation and the involvement of gut-joint axis in this process remains unknown. The present study demonstrated the beneficial effects of PBMT on RA, where we found the restoration of gut microbiota homeostasis, and the related key pathways and metabolites after PBMT. We also discovered that the therapeutic effects of PBMT on RA mainly through the gut-joint axis, in which the amino acid metabolites (Alanine and N-acetyl aspartate) play the key role and rely on the activity of metabolic enzymes in the target organs. Together, the results prove that the metabolites of amino acid from gut microbiota mediate the regulation effect on the gut-joint axis and the therapeutic effect on rheumatoid arthritis of PBMT.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Imunidade , Aminoácidos
7.
J Cell Physiol ; 238(12): 2827-2840, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801347

RESUMO

Growth differentiation factor 11 (GDF11) is a putative systemic rejuvenation factor. In this study, we characterized the mechanism by which GDF11 reversed aging of mesenchymal stem cells (MSCs). In culture, aged MSCs proliferate slower and are positive for senescence markers senescence-associated ß-galactosidase and P16ink4a . They have shortened telomeres, decreased GDF11 expression, and reduced osteogenic potential. GDF11 can block MSC aging in vitro and reverse age-dependent bone loss in vivo. The antiaging effect of GDF11 is via activation of the Smad2/3-PI3K-AKT-mTOR pathway. Unexpectedly, GDF11 also upregulated a DNA demethylase Tet2, which served as a key mediator for GDF11 to autoregulate itself via demethylation of the GDF11 promoter. Mutation of Tet2 facilitates MSC aging by blocking GDF11 expression. Mutagenesis of Tet2-regulated CpG sites also blocks GDF11 expression, leading to MSC aging. Together, a novel mutual regulatory relationship between GDF11 and an epigenetic factor Tet2 unveiled their antiaging roles.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais , Senescência Celular/genética , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Humanos
9.
Pathol Res Pract ; 249: 154766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37633006

RESUMO

BACKGROUND: Astragaloside IV (AS­IV) was used for breast cancer (BC) treatment in China from ancient times; however, the mechanism of the prevention effect of AS-IV on BC remains not entirely clear. METHODS: qRT-PCR, western blot and flow cytometry were employed to validate the expression of gene and protein expressions. CCK-8 assay, scratch assay, and transwell assay were used to assess the BC cell proliferation, migration, and invasion. Co-culture of conditional medium from macrophages and BC were performed. RESULTS: AS-IV suppressed macrophage polarized to M2 phenotype and thereby inhibited M2 macrophage-induced BC progression. The inhibitory effect of AS-IV on M2 macrophage polarization was exerted via the deactivation of the Akt/Foxo1 signaling pathway in macrophages by suppressing TGF-ß. The addition of TGF-ß or the treatment with Akt activator SC79 reversed the regulatory effect of AS-IV on M2 macrophage polarization, which increased M2 macrophage polarization-induced BC cell proliferation, migration and invasion. CONCLUSION: This present study revealed a new mechanism of AS-IV inhibited M2 macrophage polarization-induced BC progression and may provide a potential target for the treatment of BC.


Assuntos
Neoplasias da Mama , Saponinas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Saponinas/farmacologia , Macrófagos
10.
Phys Chem Chem Phys ; 25(32): 21649-21660, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37551529

RESUMO

Diamond tools play a vital role in precision machining. However, the adhesive wear restricts their application when Fe-based workpieces are cut by diamond tools. Thus, it is significant to theoretically explain the interface binding mechanism between the diamond and Fe alloy matrix. In this study, the adhesion and friction behaviors of a γ-Fe/diamond (denoted as Fe/C) heterogeneous contact interface were investigated employing density functional theory (DFT). The results show that the transfer of the Fe atom to C atom occurs when the interaction energy for a given configuration is larger than the separation energy of the corresponding Fe surface layers. The energy barriers of the Fe/C(100), (110) and (111) sliding interfaces along the minimum energy path are 1.45, 0.48 and 0.42 J m-2, respectively, indicating that the Fe/C(111) interface is the easiest to slide. Furthermore, the friction potential barrier increases with an increase in the load (1-5 nN) according to the potential energy curves. Moreover, the friction coefficient of the Fe/C interface is larger than 0.2 and provides a theoretical minimum friction coefficient for the Fe/C sliding interface.

11.
Photochem Photobiol Sci ; 22(10): 2271-2283, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394546

RESUMO

Matrix metallopreteinase (MMP), a family of matrix degrading enzyme, plays a significant role in persistent and irreversible joint damage in rheumatoid arthritis (RA). Photobiomodulatory therapy (PBMT) has become an emerging adjunct therapy for RA. However, the molecular mechanism of PBMT on RA remains unclear. The purpose of this study is to explore the effect of 630 nm light emitting diode (LED) irradiation on RA and its underly molecular mechanism. Arthritis clinic scores, histology analysis and micro-CT results show that 630 nm LED irradiation ameliorates collagen-induced arthritis (CIA) in mice with the reduction of the extents of paw swelling, inflammation and bone damage. 630 nm LED irradiation significantly reduces MMP-3 and MMP-9 levels and inhibits p65 phosphorylation level in the paws of CIA mice. Moreover, 630 nm LED irradiation significantly inhibits the mRNA and protein levels of MMP-3 and MMP-9 in TNF-α-treated MH7A cells, a human synovial cell line. Importantly, 630 nm LED irradiation reduces TNF-α-induced the phosphorylated level of p65 but not alters STAT1, STAT3, Erk1/2, JNK and p38 phosphorylation levels. Immunofluorescence result showed that 630 nm LED irradiation blocks p65 nuclear translocation in MH7A cells. In addition, other MMPs mRNA regulated by NF-κB were also significantly inhibited by LED irradiation in vivo and in vitro. These results indicates that 630 nm LED irradiation reduces the MMPs levels to ameliorate the development of RA by inhibiting the phosphorylation of p65 selectively, suggesting that 630 nm LED irradiation may be a beneficial adjunct therapy for RA.Graphical abstract.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Humanos , Camundongos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 9 da Matriz , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
12.
Sensors (Basel) ; 23(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514906

RESUMO

This paper presents a monolithic microwave integrated circuit (MMIC) low noise amplifier (LNA) that is compatible with n257 (26.5-29.5 GHz) and n258 (24.25-27.5 GHz) frequency bands for fifth-generation mobile communications system (5G) and millimeter-wave radar. The total circuit size of the LNA is 2.5 × 1.5 mm2. To guarantee a trade-off between noise figure (NF) and small signal gain, the transmission lines are connected to the source of gallium nitride (GaN)-on-SiC high electron mobility transistors (HEMT) by analyzing the nonlinear small signal equivalent circuit. A series of stability enhancement measures including source degeneration, an RC series network, and RF choke are put forward to enhance the stability of designed LNA. The designed GaN-based MMIC LNA adopts hybrid-matching networks (MNs) with co-design strategy to realize low NF and broadband characteristics across 5G n257 and n258 frequency band. Due to the different priorities of these hybrid-MNs, distinguished design strategies are employed to benefit small signal gain, input-output return loss, and NF performance. In order to meet the testing conditions of MMIC, an impeccable system for measuring small has been built to ensure the accuracy of the measured results. According to the measured results for small signal, the three-stage MMIC LNA has a linear gain of 18.2-20.3 dB and an NF of 2.5-3.1 dB with an input-output return loss better than 10 dB in the whole n257 and n258 frequency bands.

13.
Life Sci ; 328: 121877, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352918

RESUMO

The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting ß-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.


Assuntos
Envelhecimento , Fatores de Transcrição Forkhead , Humanos , Proteína Forkhead Box O3/genética , Fatores de Transcrição Forkhead/genética , Apoptose/genética , Inflamação
14.
Microbiome ; 11(1): 120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254162

RESUMO

BACKGROUND: Metformin, a type 2 diabetes treatment, improves the cognitive function of aged mice; however, whether the protective effects of metformin on cognitive function in aged mice are associated with the gut microbiome is poorly understood. Although some studies suggest that the gut microbe composition influences cognitive function and that manipulating the gut microbiota might protect against age-related cognitive dysfunction, there is no direct evidence to validate that the gut microbiota mediates the effect of metformin on cognitive improvement. RESULTS: In this study, we show that the gut microbiota is altered by metformin, which is necessary for protection against ageing-associated cognitive function declines in aged mice. Mice treated with antibiotics did not exhibit metformin-mediated cognitive function protection. Moreover, treatment with Akkermansia muciniphila, which is enriched by metformin, improved cognitive function in aged mice. Mechanistically, A. muciniphila decreased pro-inflammatory-associated pathways, particularly that of the pro-inflammatory cytokine interleukin (IL)-6, in both the peripheral blood and hippocampal profiles, which was correlated with cognitive function improvement. An IL-6 antibody protected cognitive function, and an IL-6 recombinant protein abolished the protective effect of A. muciniphila on cognitive function in aged mice. CONCLUSION: This study reveals that A. muciniphila, which is mediated in the gut microbiota by metformin, modulates inflammation-related pathways in the host and improves cognitive function in aged mice by reducing the pro-inflammatory cytokine IL-6. Video Abstract.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Interleucina-6 , Metformina , Animais , Camundongos , Cognição , Citocinas , Interleucina-6/metabolismo , Metformina/farmacologia , Verrucomicrobia
15.
Int Wound J ; 20(7): 2718-2725, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36950772

RESUMO

The study aimed to assess the functional and aesthetic outcomes of abdominal full-thickness skin grafts (FTSGs) in paediatric postburn digital and palmar flexion contractures. The digital and palmar functions and aesthetics of 50 children who met the criteria were evaluated at pre-operation, the 3rd- and 12th-month post-operation, respectively. In the evaluation, the Vancouver Scar Scale (VSS), total active movement (TAM), and Jebsen-Taylor Hand Function Test (JHFT) were used. The contralateral, unaffected hand served as the criteria for functional recovery. The complications of donor sites were observed, and the take rate of skin grafts was calculated. The VSS scores at the 3rd and 12th months post-operation were lower than those before the operation. The TAM of each finger was improved at the 3rd and 12th months post-operation, compared with that before the operation. There was a significant difference in the time to complete the JHFT between the affected hand and the unaffected at the 3rd month post-operation, but no significant difference between them at the 12th month post-operation. The excellent and good take rate of the skin grafts was 90.00%.No donor site complications were observed. The abdominal FTSGs are effective in repairing paediatric digital and palmar scar contractures, with satisfying functional and aesthetic results, especially in large defects after scar release and resection.


Assuntos
Queimaduras , Contratura , Criança , Humanos , Transplante de Pele/métodos , Cicatriz/cirurgia , Cicatriz/complicações , Queimaduras/complicações , Queimaduras/cirurgia , Contratura/cirurgia , Contratura/complicações , Estética
16.
Immun Ageing ; 20(1): 12, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906583

RESUMO

BACKGROUND: Glycyrrhizic acid (GA), a saponin compound often used as a flavoring agent, can elicit anti-inflammatory and anti-tumor effects, and alleviate aging. However, the specific mechanism by which GA alters immune cell populations to produce these beneficial effects is currently unclear. RESULTS: In this study, we systematically analyzed single-cell sequencing data of peripheral blood mononuclear cells from young mice, aged mice, and GA-treated aged mice. Our in vivo results show that GA reduced senescence-induced increases in macrophages and neutrophils, and increased numbers of lymphoid lineage subpopulations specifically reduced by senescence. In vitro, GA significantly promoted differentiation of Lin-CD117+ hematopoietic stem cells toward lymphoid lineages, especially CD8+ T cells. Moreover, GA inhibited differentiation of CD4+ T cells and myeloid (CD11b+) cells by binding to S100 calcium-binding protein 8 (S100A8) protein. Overexpression of S100A8 in Lin- CD117+ hematopoietic stem cells enhanced cognition in aged mice and the immune reconstitution of severely immunodeficient B-NDG (NOD.CB17-Prkdcscid/l2rgtm1/Bcgen) mice. CONCLUSIONS: Collectively, GA exerts anti-aging effects by binding to S100A8 to remodel the immune system of aged mice.

17.
Commun Biol ; 6(1): 235, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864222

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is crucial for energy metabolism, oxidative stress, DNA damage repair, longevity regulation, and several signaling processes. To date, several NAD+ synthesis pathways have been found in microbiota and mammals, but the potential relationship between gut microbiota and their hosts in regulating NAD+ homeostasis remains largely unknown. Here, we showed that an analog of the first-line tuberculosis drug pyrazinamide, which is converted by nicotinamidase/pyrazinamidase (PncA) to its active form, affected NAD+ level in the intestines and liver of mice and disrupted the homeostasis of gut microbiota. Furthermore, by overexpressing modified PncA of Escherichia coli, NAD+ levels in mouse liver were significantly increased, and diet-induced non-alcoholic fatty liver disease (NAFLD) was ameliorated in mice. Overall, the PncA gene in microbiota plays an important role in regulating NAD+ synthesis in the host, thereby providing a potential target for modulating host NAD+ level.


Assuntos
Niacina , Hepatopatia Gordurosa não Alcoólica , Animais , Niacina/farmacologia , Niacinamida/farmacologia , Hepatopatia Gordurosa não Alcoólica/etiologia , NAD , Dieta , Escherichia coli , Mamíferos
18.
Nanoscale ; 15(16): 7329-7343, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36974757

RESUMO

This work elaborates on the decoration of metal oxides (ZnO and Fe3O4) between MXene sheets for use as the supporting geometry of PCBM electron transport layers (ETLs) in perovskite solar cells and X-ray detectors. The metal oxide supports for carrying the plentiful charge carriers and the hydrophobic nature of MXenes provide an easy charge transfer path through their flakes and a smooth surface for the ETL. The developed interface engineering based on the MXene/ZnO and MXene/Fe3O4 hybrid ETL results in improved power conversion efficiencies (PCEs) of 13.31% and 13.79%, respectively. The observed PCE is improved to 25.80% and 30.34% by blending the MXene/ZnO and MXene/Fe3O4 nanoparticles with the PCBM layer, respectively. Various factors, such as surface modification, swift interfacial interaction, roughness decrement, and charge transport improvement, are strongly influenced to improve the device performance. Moreover, X-ray detectors with the MXene/Fe3O4-modulated PCBM ETL achieve a CCD-DCD, sensitivity, mobility, and trap density of 15.46 µA cm-2, 4.63 mA per Gy per cm2, 5.21 × 10-4 cm2 V-1 s-1, and 1.47 × 1015 cm2 V-1 s-1, respectively. Metal oxide-decorated MXene sheets incorporating the PCBM ETL are a significant route for improving the photoactive species generation, long-term stability, and high mobility of perovskite-based devices.

19.
Digit Health ; 9: 20552076231155675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798889

RESUMO

Background: The pain induced by postoperative dressing changes adversely influence recovery and quality of life. In this study, we try to evaluate the pain alleviation effect of virtual reality (VR) distraction during postoperative dressing changes of patients who received surgical drainage of perianal abscess. Methods: This was a prospective, randomized clinical trial. A total of 172 patients with perianal abscess were randomly assigned into control (only analgesics) and VR groups (VR distraction + analgesics). The pain and physiological measurements of all patients were collected before, during, and after the first dressing change following surgery. The difference in pain intensity and physiological parameters measurement between control and VR group was analyzed. Results: The baseline characteristics of VR and control group were comparable (all P > 0.05). There was no significant difference in mean pain scores prior to and after dressing change between groups (both P > 0.05). Mean pain scores of 5, 10, 15, and 20 min measuring points during the first dressing change were significantly lower in the VR group compared with the control group (all P < 0.05). Pulse rates and oxygen saturation were not significantly different between groups. Conclusion: VR can be used as an effective adjuvant pain distraction approach for postoperative dressing change.

20.
Photobiomodul Photomed Laser Surg ; 40(11): 751-762, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36395086

RESUMO

Background: Inflammatory cytokine secretion from fibroblast-like synoviocytes (FLS) plays a vital role in the pathological process of rheumatoid arthritis (RA). Photobiomodulation (PBM) has been widely used in the treatment of RA. However, the mechanism of PBM in RA has not been clarified. Objective: In this study, we investigated the underlying mechanism of 630 nm light-emitting diode (LED) irradiation on anti-inflammation using mRNA sequencing analysis. Methods and results: Reverse transcription (RT)-quantitative polymerase chain reaction (RT-qPCR) results showed that 630 nm LED irradiation significantly inhibited interleukin (IL)-1ß, IL-6, and IL-8 mRNA expression in rheumatoid arthritis fibroblast synovial cells (RA-FLS) and MH7A cells. A total of 1730 differentially expressed genes (DEGs) were identified between tumor necrosis factor α (TNF-α)+LED and TNF-α-treated RA-FLS and 1219 DEGs in MH7A cells by mRNA sequencing analysis. A total of 646 intersecting DEGs from the 2 cell models were used for gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Protein-protein interaction (PPI) network of DEGs was used, and 502 nodes and 1452 edges were found. A total of 14 clusters were generated in MCODE, and the top 3 clusters were selected as hub modules. PPI network showed that most of the nodes were DEGs of the heat shock protein (HSP) family. RT-qPCR verified that 630 nm LED irradiation significantly increased HSP70 mRNA expression in FLS. Conclusions: Taken together, our results revealed the correlation between HSP70 and the inhibition of inflammation caused by 630 nm LED irradiation. These findings suggested that HSP may be a novel target of 630 nm LED irradiation to alleviate inflammation in the treatment of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Sinoviócitos/química , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Membrana Sinovial/química , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Choque Térmico , Células Cultivadas , Fibroblastos/metabolismo , Artrite Reumatoide/radioterapia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Inflamação , RNA Mensageiro/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...